Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex

Year: 2018

Authors: Mazzamuto G., Costantini I., Neri M., Roffilli M., Silvestri L., Pavone F.S.

Autors Affiliation: European Laboratory for Non-linear Spectroscopy (LENS)
Bioretics Srl
National Institute of Optics, National Research Council (INO-CNR)
University of Florence, Department of Physics and Astronomy

Abstract: Quantitative analysis of brain cytoarchitecture requires effective and efficient segmentation of the raw images. This task is highly demanding from an algorithmic point of view, because of the inherent variations of contrast and intensity in the different areas of the specimen, and of the very large size of the datasets to be processed. Here, we report a machine vision approach based on Convolutional Neural Networks (CNN) for the near real-time segmentation of neurons in three-dimensional images with high specificity and sensitivity. This instrument, together with high-throughput sample preparation and imaging, can lay the basis for a quantitative revolution in neuroanatomical studies.

Conference title:

KeyWords: segmentation, brain images, convolutional neural network