Scientific Results

Towards excimer-laser-based stereolithography: A rapid process to fabricate rigid biodegradable photopolymer scaffolds

Year: 2012

Authors: Beke S., Anjum F., Tsushima H., Ceseracciu L., Chieregatti E., Diaspro A., Athanassiou A., Brandi F.

Autors Affiliation: Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy;
Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16152 Genova, Italy;
Department of Physics, University of Genoa, via Balbi 5, 16126 Genova, Italy;
Center for Biomolecular Nanotechnologies at UNILE, Istituto Italiano di Tecnologia, Via Barsanti, 73010 Arnesano (LE), Italy;
National Nanotechnology Laboratory (NNL), CNR – Istituto di Nanoscienze, via per Arnesano, 73100 Lecce, Italy

Abstract: We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young\’s moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.


Volume: 9 (76)      Pages from: 3017  to: 3026

KeyWords: Laser photocuring; Scaffolds; Tissue engineering; Biocompatibility; Poly(propylene fumarate)
DOI: 10.1098/rsif.2012.0300

Citations: 29
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more