Scientific Results

Ergodicity in randomly perturbed quantum systems

Year: 2017

Authors: Gherardini S., Lovecchio C., Müller M.M., Lombardi P., Caruso F., Cataliotti F.S.

Autors Affiliation: LENS, QSTAR, Department of Physics and Astronomy, University of Florence, via G. Sansone 1, Sesto Fiorentino, I-50019, Italy; INFN, CSDC and Department of Information Engineering, University of Florence, via S. Marta 3, Florence, I-50139, Italy; INO-CNR, UOS Sesto Fiorentino, via N. Carrara 1, Sesto Fiorentino, I-50019, Italy

Abstract: The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show how such a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at random times while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically show how the most probable value of the probability for the system to be in a given state eventually deviates from the non-stochastic case when the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.


Volume: 2 (1)      Pages from: 015007-1  to: 015007-9

More Information: European Commission, EC. Ente Cassa di Risparmio di Firenze. Seventh Framework Programme, FP7. Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR, 2010LLKJBX. RBFR10M3SB, RBFR085XVZ. – We acknowledge fruitful discussions with S Ruffo, S Gupta, and A Smerzi. We thank M Schramböck (Atominstitut, TU-Wien) at the ZMNS (TU-Wien) who realised the atom chip we have used. This work was supported by the Seventh Framework Programme for Research of the European Commission, under the CIG grant QuantumBioTech, by the Italian Ministry of Education, University and Research (MIUR), under PRIN Grant No. 2010LLKJBX and FIRB Grant Agreements No. RBFR085XVZ and No. RBFR10M3SB, and by Ente Cassa di Risparmio di Firenze through the project Q-BIOSCAN.
KeyWords: Atom chips; Ergodicity; Quantum Zeno phenomena; Stochastic quantum measurements
DOI: 10.1088/2058-9565/aa5d00

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-11-28
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more