Scientific Results

High efficiency laser action in mildly doped Yb:LuYAG ceramics

Year: 2017

Authors: Pirri A., Toci G., Li J., Xie T., Pan Y., Babin V., Beitlerova A., Nikl M., Vannini M.

Autors Affiliation: C.N.R. – National Research Council, Istituto di Fisica Applicata “Nello Carrara”, Via Madonna del Piano 10, Sesto Fiorentino, FI I-50019, Italy; C.N.R. – National Research Council, Istituto Nazionale di Ottica, Via Madonna del Piano 10, Sesto Fiorentino, FI I-50019, Italy; Key Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China; Institute of Physics Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague, 162 53, Czech Republic

Abstract: We report the first laser oscillations of 5 at%, 10 at% and 20 at% Yb3+ doped LuYAG ceramic samples and their spectroscopic characterization. The maximum output power, 8.7 W at 1029 nm, is achieved by 10 at% sample. A slope efficiency as high as 90.1% is obtained from the 10 at% doped sample. To our knowledge, these are the highest laser slope efficiencies obtained so far for Yb3+ doped LuYAG ceramics. With the 20 at% doped ceramic the maximum output power was 7.2 W at 1047.6 nm with a corresponding slope efficiency of 47.4%, whereas a decrease of the output power is observed for absorbed pump power higher than 15.6 W, probably due to the appearance of a non-linear loss mechanism. Finally, we explored the tunability of the ceramics finding the broadest continuous tuning range (from 992 nm to 1060 nm, i.e. 68 nm), with 5 at% and 10 at%, while it decreases to 54 nm with 20 at%.

Journal/Review: OPTICAL MATERIALS

Volume: 73      Pages from: 312  to: 318

More Information: This work was partially supported by CNR-AVCR Joint Project 2013–2015 “Influence of composition and defects on the properties of transparent ceramics and crystals for laser and scintillator applications”; by the National Natural Science Foundation of China (Grant No. 61575212 ); by the key research project of the frontier science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC022 ) and by the project “ Chinese Academy of Sciences Visiting Professor for Senior International Scientists” (Grant No. 2013T2G0004 ).
KeyWords: Efficiency; Ytterbium, Absorbed pump power; Continuous tuning range; High-efficiency lasers; Laser ceramics; LuYAG; Maximum output power; Spectroscopic characterization; Yb laser, Ceramic materials
DOI: 10.1016/j.optmat.2017.08.031

Citations: 13
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more