Scientific Results

Torus Breakdown and Homoclinic Chaos in a Glow Discharge Tube

Year: 2017

Authors: Ginoux JM., Meucci R., Euzzor S.

Autors Affiliation: [Ginoux, Jean-Marc] UMR CNRS 7296, Lab Sci Informat & Syst, CS 60584, F-83041 Toulon 9, France.
[Meucci, Riccardo; Euzzor, Stefano] CNR, Ist Nazl Ott, Largo E Fermi 6, I-50125 Florence, Italy.

Abstract: Starting from historical researches, we used, like Van der Pol and Le Corbeiller, a cubic function for modeling the current-voltage characteristic of a direct current low-pressure plasma discharge tube, i.e. a neon tube. This led us to propose a new four-dimensional autonomous dynamical system allowing to describe the experimentally observed phenomenon. Then, mathematical analysis and detailed numerical investigations of such a fourth-order torus circuit enabled to highlight bifurcation routes from torus breakdown to homoclinic chaos following the Newhouse-RuelleTakens scenario.

Journal/Review: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS

Volume: 27 (14)      Pages from: 1750220-1  to: 1750220-12

KeyWords: Current voltage characteristics; Dynamical systems; Glow discharges, Autonomous dynamical systems; DC glow discharge; Historical research; Homoclinic chaos; Low pressure plasma; Mathematical analysis; Numerical investigations; Torus breakdown, Gas discharge tubes
DOI: 10.1142/S0218127417502200

Citations: 5
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more