Scientific Results

Particle-Hole Character of the Higgs and Goldstone Modes in Strongly Interacting Lattice Bosons

Year: 2018

Authors: Di Liberto M., Recati A., Trivedi N., Carusotto I., Menotti C.

Autors Affiliation: [Di Liberto, M.; Recati, A.; Carusotto, I.; Menotti, C.] INO CNR BEC Ctr, I-38123 Povo, Italy and Univ Trento, Dipartimento Fis, I-38123 Povo, Italy.
[Recati, A.] Ludwigs Maximillian Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany.
[Trivedi, N.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.

Abstract: We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 120 (7)      Pages from: 073201-1  to: 073201-6

More Information: INSULATOR TRANSITION; OPTICAL LATTICES; QUANTUM GAS; ATOMS; TEMPERATURE;
KeyWords: insulator transition; optical lattices; qunatum gas; atoms; temperature
DOI: 10.1103/PhysRevLett.120.073201

Citations: 4
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more