Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals

Year: 2016

Authors: Insero G., Clivati C., D’Ambrosio D., De Natale P., Santambrogio G., Schunemann P.G., Zondy J.-J., Borri S.

Autors Affiliation: Istituto Nazionale di Ottica, INO-CNR, European Laboratory for Nonlinear Spectroscopy, LENS, Via N. Carrara 1, Sesto Fiorentino, 50019, Italy; Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Firenze, Via G. Sansone 1, Sesto Fiorentino, FI 50019, Italy; Istituto Nazionale di Ricerca Metrologica, INRIM, Strada delle Cacce 91, Torino, 10135, Italy; BAE Systems, Inc., MER15-1813, P.O. Box 868, Nashua, NH 03061-0868, United States; Nazarbaev University, School of Science and Technology, Physics Department, Kabanbay Batyr 53, Astana, 010000, Kazakhstan

Abstract: We report on the generation of coherent mid-infrared radiation around 5.85 μm by difference frequency generation (DFG) of a continuous-wave Nd:YAG laser at 1064 nm and a diode laser at 1301 nm in an orientation-patterned gallium phosphide (OP-GaP) crystal. We provide the first characterization of the linear, thermo-optic, and nonlinear properties of OP-GaP in a DFG configuration. Moreover, by comparing the experimental efficiency to Gaussian beam DFG theory, we derive an effective nonlinear coefficient d = 17(3) pm/V for first-order quasi-phase-matched OP-GaP. The temperature and signal wavelength tuning curves are in qualitative agreement with theoretical modeling. © 2016 Optical Society of America.

Journal/Review: OPTICS LETTERS

Volume: 41 (21)      Pages from: 5114  to: 5117

More Information: Instituto Nazionale di Fisica Nucleare, INFN. Instituto Nazionale di Fisica Nucleare, INFN. Horizon 2020, EMPIR-15SIB05-OFTEN. – ELI European project; Istituto Nazionale di Fisica Nucleare (INFN) (SUPREMO); Horizon 2020 (EMPIR-15SIB05-OFTEN); Participating States. EMPIR-15SIB05-OFTEN has received funding from the EMPIR programme co-financed by the Participating States and from the European Union
KeyWords: Gallium phosphide; Gaussian beams; III-V semiconductors; Infrared devices; Infrared radiation; Neodymium lasers; Optical frequency conversion; Phase matching; Semiconducting gallium; Yttrium aluminum garnet, Difference-frequency generation; Effective nonlinear coefficient; Mid-infrared radiation; ND : YAG lasers; Nonlinear properties; Quasi-phase-matched; Signal wavelength; Theoretical modeling, Crystal orientation
DOI: 10.1364/OL.41.005114

Citations: 34
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-06-16
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here