Scientific Results

Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation

Year: 2017

Authors: Consolino L., Jung S., Campa A., De Regis M., Pal S., Kim J.H., Fujita K., Ito A., Hitaka M., Bartalini S., De Natale P., Belkin M.A., Vitiello M.S.

Autors Affiliation: Consiglio Nazionale delle Ricerche (CNR)–Istituto Nazionale di Ottica and European Laboratory for Non-Linear Spectroscopy, Via Carrara 1, 50019 Sesto Fiorentino (Firenze), Italy; Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA; National Enterprise for nanoScience and nanoTechnology (NEST), CNR–Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita-ku, Hamamatsu 434-8601, Japan

Abstract: Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 mW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 x 10(-10). The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

Journal/Review: SCIENCE ADVANCES

Volume: 3 (9)      Pages from: e1603317-1  to: e1603317-8

KeyWords: Linewidth enhancement factor; Room-temperature; Continuous-wave; Phase-locking; Noise; Pumping (laser); Quantum cascade lasers; Semiconductor lasers, Difference-frequency generation; Electrically pumped; High-precision spectroscopy; Imaging applications; Mid-infrared quantum cascade; Semiconductor sources; Terahertz frequencies; Terahertz quantum-cascade lasers, Optical frequency conversion
DOI: 10.1126/sciadv.1603317

Citations: 27
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more