Scientific Results

Anomalous gas sensing behaviors to reducing agents of hydrothermally grown alpha-Fe2O3 nanorods

Year: 2018

Authors: Donarelli M., Milan R., Rigoni F., Drera G., Sangaletti L., Ponzoni A., Baratto C., Sberveglieri G., Comini E.

Autors Affiliation: SENSOR Lab., Department of Information Engineering, University of Brescia, Via Branze 38, 25123, Brescia, Italy; National Institute of Optics, National Research Council (CNR-INO), Unit of Brescia, Via Branze 45, 25123, Brescia, Italy; Division of Materials Science, Department of Engineering Sciences and Mathematics, LuleƄ University of Technology, SE-971 87, LuleƄ, Sweden; Department of Mathematics and Physics, Catholic University of Sacred Heart, Via dei Musei 41, 25121, Brescia, Italy; NASYS srl, Via Branze 38, 25123, Brescia, Italy

Abstract: alpha-Fe2O3 nanorods have been grown by hydrothermal method, dispersed in ethanol and drop casted on a pre patterned alumina substrate with Pt electrodes. Their morphology, crystalline and electronic properties have been investigated by Scanning Electron Microscopy, Raman and X-ray Photoelectron Spectroscopies and X-ray Diffraction. The so-fabricated devices have been used for hydrogen gas sensing, showing their ability to detect H-2 at operating temperatures > 200 degrees C, at relative humidity values comprised from 0% to 50%. The sensing behavior of alpha-Fe2O3 nanorods is compatible with an n to p conductivity transition when the operating temperature is increased up to 300 degrees C. Outstanding p-type hydrogen sensing performances of alpha-Fe2O3 have been observed and reported. Besides H-2 detection, the alpha-Fe2O3 nanorods-based device is a good humidity sensor, at room temperature (n-type) and at 400 degrees C (p-type). CO and ethanol sensing performances have been investigated at different operating temperatures and relative humidity values. CO and ethanol anomalous acceptor-like behaviors at 200 degrees C in humid air has been explained by the interactions of these target gases with the water molecules adsorbed on the metal oxide surfaces.


Volume: 273      Pages from: 1237  to: 1245

KeyWords: Hematite; n-p transition; Hydrothermal; Hydrogen sensing;
DOI: 10.1016/j.snb.2018.07.042

Citations: 10
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more