Extreme Ultraviolet Beam Enhancement by Relativistic Surface Plasmons

Year: 2018

Authors: Cantono G., Fedeli L., Sgattoni A., Denoeud A., Chopineau L., Réau F., Ceccotti T., Macchi A.

Autors Affiliation: 1) LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
2) Université Paris Sud, Paris, 91400 Orsay, France
3) National Institute of Optics, National Research Council (CNR/INO) A. Gozzini unit, 56124 Pisa, Italy
4) Enrico Fermi Department of Physics, University of Pisa, 56127 Pisa, Italy
5) Department of Energy, Politecnico di Milano, 20133 Milano, Italy
6) LULI-UPMC: Sorbonne Universités, CNRS, École Polytechnique, CEA, 75005 Paris, France
7) LESIA, Observatoire de Paris, CNRS, UPMC: Sorbonne Universites, 92195 Meudon, France

Abstract: The emission of high-order harmonics in the extreme ultraviolet range from the interaction of a short, intense laser pulse with a grating target is investigated experimentally. When resonantly exciting a surface plasmon, both the intensity and the highest order observed for the harmonic emission along the grating surface increase with respect to a flat target. Harmonics are obtained when a suitable density gradient is preformed at the target surface, demonstrating the possibility to manipulate the grating profile on a nanometric scale without preventing the surface plasmon excitation. In support of this, the harmonic emission is spatiotemporally correlated to the acceleration of multi-MeV electron bunches along the grating surface. Particle-in-cell simulations reproduce the experimental results and give insight on the mechanism of high harmonic generation in the presence of surface plasmons.


Volume: 120 (26)      Pages from: 264803-1  to: 264803-5

KeyWords: surface plasmons; high field plasmonics; high harmonics; XUV pulses; ultrashort radiation pulses
DOI: 10.1103/PhysRevLett.120.264803

Citations: 14
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-08-07
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here