The laser control of the muon g-2 experiment at Fermilab
Year: 2018
Authors: Anastasi A., Anastasio A., Avino S., Basti A., Bedeschi F., Boiano A., Cantatore G., Cauz D., Ceravolo S., Corradi G., Dabagov S., Meo P.D., Driutti A., Sciascio G.D., Stefano R.D., Escalante O., Ferrari C., Fienberg A.T., Fioretti A., Gabbanini C., Gagliardi G., Gioiosa A., Hampai D., Hertzog D.W., Iacovacci M., Incagli M., Karuza M., Kaspar J., Lusiani A., Marignetti F., Mastroianni S., Moricciani D., Nath A., Pauletta G., Piacentino G.M., Raha N., Santi L., Smith M.W., Venanzoni G.
Autors Affiliation: Laboratori Nazionali Frascati dell?Infn, Frascati, , Italy; INFN, Sez. Napoli, Napoli, , Italy; INFN, Sez. di Trieste, Trieste, , Italy; INFN, Sez. di Roma Tor Vergata, Roma, , , Italy; INFN, Sez. di Roma Tor Vergata, Roma, , , Italy; INFN, Sez. di Lecce, Lecce, , Italy; INFN, Sez. di Pisa, Pisa, , Italy; Istituto Nazionale di Ottica Del CNR, Pisa, , , Italy; Istituto Nazionale di Ottica Del CNR, Pisa, , , Italy; Scuola Normale Superiore, Pisa, , Italy; Universita di Napoli federico II, Napoli, , Italy; Dipartimento MIFT, Universita Degli Studi di Messina, Messina, , Italy; University of Rijeka, Rijeka, , Croatia; PN Lebedev Phys Inst, Moscow, , Russian Federation; NR Nuclear University MEPhI, Moscow, , Russian Federation; Universita di Cassino, Cassino, , Italy; Universita di Udine, Udine, , Italy; University of Washington, Seattle, , United States; Universia di Trieste, Trieste, , Italy; Istituto Nazionale di Ottica Del CNR, Pozzuoli, , , Italy; Istituto Nazionale di Ottica Del CNR, Pozzuoli, , , Italy; G.C. di Udine, Udine, , Italy
Abstract: The Muon g – 2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a mu = (g mu – 2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state- of- art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale.
The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons.
A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance.
Here we present and discuss the main features of the Laser Control board.
Journal/Review: JOURNAL OF INSTRUMENTATION
Volume: 13 Pages from: T02009-1 to: T02009-13
More Information: This research was supported by Istituto Nazionale di Fisica Nucleare (Italy) and by the EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 690835.
SD would like to thank the support by the Competitiveness Program of National Research Nuclear University MEPhI.KeyWords: Calibration; Charged particles; Data acquisition; Light transmission; Magnetic moments; Anomalous magnetic moments; Continuous monitoring; Data acquisition equipment; Detector calibration; Detector performance; Light distribution; Parts per millions; Running conditions; LightDOI: 10.1088/1748-0221/13/02/T02009Citations: 8data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2023-05-28References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here