Scientific Results

The laser control of the muon g-2 experiment at Fermilab

Year: 2018

Authors: Anastasi A., Anastasio A., Avino S., Basti A., Bedeschi F., Boiano A., Cantatore G., Cauz D., Ceravolo S., Corradi G., Dabagov S., Meo P.D., Driutti A., Sciascio G.D., Stefano R.D., Escalante O., Ferrari C., Fienberg A.T., Fioretti A., Gabbanini C., Gagliardi G., Gioiosa A., Hampai D., Hertzog D.W., Iacovacci M., Incagli M., Karuza M., Kaspar J., Lusiani A., Marignetti F., Mastroianni S., Moricciani D., Nath A., Pauletta G., Piacentino G.M., Raha N., Santi L., Smith M.W., Venanzoni G.

Autors Affiliation: Laboratori Nazionali Frascati dell

Abstract: The Muon g – 2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a mu = (g mu – 2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state- of- art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale.
The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons.
A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance.
Here we present and discuss the main features of the Laser Control board.


Volume: 13      Pages from: T02009-1  to: T02009-13

KeyWords: Calibration; Charged particles; Data acquisition; Light transmission; Magnetic moments; Anomalous magnetic moments; Continuous monitoring; Data acquisition equipment; Detector calibration; Detector performance; Light distribution; Parts per millions; Running conditions; Light
DOI: 10.1088/1748-0221/13/02/T02009

Citations: 8
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-16
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more