Scientific Results

Optical puff mediated laminar-turbulent polarization transition

Year: 2018

Authors: Gao Lei; Zhu Tao; Wabnitz Stefan; Li Yujia; Tang Xiao Sheng; Cao Yu Long

Autors Affiliation: Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China; Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy; CNR, INO, Via Branze 38, I-25123 Brescia, Italy;
Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia

Abstract: Various physical structures exhibit a fundamentally probabilistic nature over diverse scales in space and time, to the point that the demarcation line between quantum and classic laws gets blurred. Here, we characterize the probability of intermittency in the laminar-turbulence transition of a partially mode-locked fiber laser system, whose degree of coherence is deteriorated by multiple mode mixing. Two competing processes, namely the proliferation and the decay of an optical turbulent puff, determine a critical behavior for the onset of turbulence in such a nonlinear dissipative system. A new kind of polarization rogue waves is introduced at the point of transition to polarization turbulence. The probabilistic description of the puff-mediated laminar-turbulence polarization transition provides an additional degree of freedom for our understanding of the complex physics of lasers.

Journal/Review: OPTICS EXPRESS

Volume: 26 (5)      Pages from: 6103  to: 6113

KeyWords: Degrees of freedom (mechanics); Fiber lasers; Turbulence, Competing process; Degree of coherence; Degree of freedom; Laminar-turbulence transition; Nonlinear dissipative systems; Onset of turbulence; Physical structures; Probabilistic descriptions, Polarization
DOI: 10.1364/OE.26.006103

Citations: 5
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more