Scientific Results

Investigation of a single wall carbon nanohorn-based nanofluid in a full-scale direct absorption parabolic trough solar collector

Year: 2017

Authors: Bortolato M., Dugaria S., Agresti F., Barison S., Fedele L., Sani E., Del Col D.

Autors Affiliation: Dipartimento di Ingegneria Industriale, University of Padua, via Venezia 1, 35135 Padua, Italy; Interdepartmental Centre “Giorgio Levi Cases” for Energy Economics and Technology, University of Padua, via Francesco Marzolo 9, Padua, Italy; CNR-ICMATE, Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, Corso Stati Uniti 4, Padua, Italy; CNR-ITC, Institute for Building Technologies, National Research Council, Corso Stati Uniti 4, Padua, Italy; CNR-INO, National Institute of Optics, National Research Council, Largo Enrico Fermi, 6, Florence, Italy

Abstract: An experimental investigation on the use of nanofluids as working fluids and direct absorbers in a full-scale concentrating collector is presented. The nanofluid consists of a suspension of single wall carbon nanohorns in distilled water with a concentration of 0.02 g L-1. The thermo-physical properties are the same as those of the base fluid, but the presence of carbon nanoparticles greatly enhances the optical characteristics. A direct absorption receiver has been designed and set up to investigate the capability of the nanofluid to absorb the concentrated sunlight. The receiver exhibits a flat geometry and has been designed for installation on an asymmetric parabolic trough, where the concentrated solar flux locally reaches 100 kW M-2 under clear-sky conditions. Results show that the application of a carbon nanohorn-based nanofluid in a concentrating collector displays an efficiency comparable to that obtained with a surface receiver tested in the same system. However, such performance is not maintained for a long time because of lack of stability of the absorbing fluid.

Journal/Review: ENERGY CONVERSION AND MANAGEMENT

Volume: 150      Pages from: 693  to: 703

More Information: The financial support of the Interdepartmental Centre \”Giorgio Levi Cases\” for Energy Economics and Technology of the University of Padova is acknowledged.
KeyWords: Collector efficiency; Nanohorns; Solar collectors; Suspensions (fluids), Concentrating collector; Direct absorption; Experimental investigations; Nanofluids; Parabolic trough; Parabolic trough solar collectors; Single wall carbon nanohorn; Thermo-physical property, Nanofluidics
DOI: 10.1016/j.enconman.2017.08.044

Citations: 32
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more