Scientific Results

Instability of the Superfluid Flow as Black-Hole Lasing Effect

Year: 2015

Authors: Finazzi S., Piazza F., Abad M., Smerzi A., Recati A.

Autors Affiliation: Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 and CNRS, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125, Firenze, Italy

Abstract: We show that the critical velocity of a superfluid flow through a penetrable barrier coincides with the onset of the analog black-hole lasing effect. This dynamical instability is triggered by modes resonating in an effective cavity formed by two horizons enclosing the barrier. The location of the horizons is set by v(x) = c(x), with v(x),c(x) being the local fluid velocity and sound speed, respectively. We compute the critical velocity analytically and show that it is univocally determined by the configuration of the horizons. In the limit of broad barriers, the continuous spectrum at the origin of the Hawking-like radiation and of the Landau energetic instability is recovered.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 114 (24)      Pages from: 245301-1  to: 245301-5

More Information: We are grateful to N. Pavloff and J. Steinhauer for very useful comments. We thank I. Carusotto and O. Gat for stimulating discussions. This work has been financially supported by ERC through the QGBE grant and by Provincia Autonoma di Trento. A. R. and F. P. acknowledge support from the Alexander Von Humboldt foundation.
DOI: 10.1103/PhysRevLett.114.245301

Citations: 9
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2019-08-18
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

English