Scientific Results

Studies on photochemical vapor generation of selenium with germicidal low power ultraviolet mercury lamp

Year: 2016

Authors: Campanella B., Menciassi A., Onor M., Ferrari C., Bramanti E., D’Ulivo A.

Autors Affiliation: Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, 56124 Pisa, Italy; C.N.R., Istituto di Chimica dei Composti Organometallici, S.S. di Pisa, Via Moruzzi, 1, 56124 Pisa, Italy; C.N.R., Istituto Nazionale di Ottica, UOS di Pisa, Via Moruzzi, 1, 56124 Pisa, Italy

Abstract: Photochemical vapor generation (photo-CVG) with flow injection – atomic fluorescence spectrometry was investigated for the determination of selenium, using formic and acetic acids as photochemical reagents. Using a germicidal low power ultraviolet mercury-based lamp, emitting both the 185 and 254 nm Hg lines, mild reaction conditions can be achieved in formic acid medium, where optimal sensitivity was obtained, at 0.3-0.5% w/w acid concentrations, whereas the optimal sensitivity could be attained with acetic acid in the range from 12 to 35% w/w. The only volatile Se product identified by gas chromatography-mass spectrometry from formic acid based photo-CVG was selenium carbonyl. A series of dedicated experiments were performed using photo-CVG and pure dimethylselenide in order to identify reaction pathways contributing to the formation of non-volatile selenium species or to the degradation of volatile selenium species. Under the optimized conditions in formic add, using 250 mu L sample volume, the limits of detection and quantification were 0.10 and 035 mu g L-1, respectively. The effect of several interfering species was investigated and the method was tested in the analysis of certified reference materials. (C) 2016 Elsevier B.V. All rights reserved.

Journal/Review: SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY

Volume: 126      Pages from: 11  to: 16

More Information: DOI: 10.1016/j.sab.2016.10.007
KeyWords: Photochemical vapor generation; Selenium; Formic acid; Germicidal lamp; Atomic fluorescence
DOI: 10.1016/j.sab.2016.10.007

Citations: 14
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more