Scientific Results

Photoinitiator-free 3D scaffolds fabricated by excimer laser photocuring

Year: 2017

Authors: Farkas B., Dante S., Brandi F.

Autors Affiliation: Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy;
Istituto Nazionale di Ottica (INO), Consiglio Nazionale Delle Ricerche (CNR), Via Moruzzi 1, Pisa, 56124, Italy

Abstract: Photoinitiator-free fabrication of poly(ethylene glycol) diacrylate (PEGDA) scaffolds is achieved using a novel three-dimensional (3D) printing method called mask projected excimer laser stereolithography (MPExSL). The spatial resolution of photoinitiator-free curing is suitable for 3D layer-by-layer fabrication with a single layer thickness well controllable at tens to hundreds of microns using 248 nm wavelength for the irradiation. The photoinitiator-free scaffolds are superior compared to their counterparts fabricated by using photoinitiator molecules, showing a higher level of biocompatibility. A release of toxic chemicals from the photoinitiator containing scaffolds is proven by cell proliferation tests. In contrast, no toxic release is found from the photoinitiator-free scaffolds, resulting in the very same level of cell proliferation as the control sample. The demonstration of photoinitiator-free PEGDA scaffolds enables the fabrication of 3D scaffolds with the highest level of biocompatibility for both in vitro and in vivo applications.


Volume: 28 (3)      Pages from: 034001-1  to: 034001-9

KeyWords: photoinitiator-free; scaffolds; 3D printing; stereolithography; excimer laser
DOI: 10.1088/1361-6528/28/3/034001

Citations: 15
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-10
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more