Scientific Results

Vibrational cooling of cold molecules with optimised shaped pulses

Year: 2010

Authors: Sofikitis D., Fioretti A., Weber S., Horchani R., Pichler M., Li X., Allegrini M., Chatel B., Comparat D., Pillet P.

Autors Affiliation: Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, 91405 Orsay, France; Laboratoire Collisions, Agrégats, Réactivité (UMR 5589, CNRS-Université Paul Sabatier Toulouse 3), Toulouse, France; Department of Physics, Goucher College, Baltimore, MD, 21204, USA; CNISM, Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 PISA, Italy

Abstract: A review of our recent experiments on broadband vibrational cooling of cold cesium molecules and of the related theory is presented. Our method is based on repetitive optical pumping cycles driven by laser light which is broad enough to excite all populated vibrational levels. Originally, the accumulation of molecular population in a particular, pre-selected vibrational level was achieved by removing from the broadband light all frequencies that could excite that vibrational level and thus making it a \’dark state\’ of the system. Here, we focus onto an additional, more sophisticated shaping method, which consists of selecting only specific frequency components that excite molecules into vibrational levels that favourably decay into the pre-selected level. The population transfer to any desired state can thus be optimised, i.e. the total population transfer to the desired vibrational level is maximised while the number of absorption-emission cycles required for the vibrational cooling is minimised. Finally, we apply this optimised technique to some more complex and still experimentally open cases: the pumping into the a(3)Sigma(+)(u) ground state for the case of Cs(2) homonuclear molecules, the rotational pumping into a pre-selected ro-vibrational level and the NaCs as an example for heteronuclear molecules.


Volume: 108 (6)      Pages from: 795  to: 810

KeyWords: Cold molecules; Cold molecules cooling; Optical pumping; Pulse shaping; Vibrational cooling
DOI: 10.1080/00268971003689899

Citations: 7
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2020-02-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here