Scientific Results

Improvement of the healing process in superficial skin wounds after treatment with EMOLED

Year: 2015

Authors: Cicchi R., Rossi F., Tatini F., Bacci S., De Siena, G., Alfieri D., Pini R., Pavone FS.

Autors Affiliation: National Institute of Optics, National Research Council, Largo E. Fermi 6, I-50125, Florence, Italy;
European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019, SestoFiorentino, Italy;
Institute of Applied Physics “Nello Carrara”, National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy; Department of Human Anatomy, Histology, and Legal Medicine, Section of Histology, University of Florence, Viale Pieraccini 6, I-50139, Florence, Italy; Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, I-50139, Florence, Italy; Light4Tech Firenze S.r.L., Via Pisana 316, I-50018 Scandicci (FI) Italy; Department of Physics, University of Florence, Via Giovanni Sansone 1, I-50019, Sesto Fiorentino, Italy

Abstract: A faster healing process was observed in superficial skin wounds after irradiation with the EMOLED photocoagulator. The instrument consists of a compact handheld photocoagulation device, useful for inducing coagulation in superficial abrasions. In this study, living animals were mechanically abraded in four regions of their back: two regions were left untreated, the other two were treated with EMOLED, healthy skin surrounding the wounds was used as a control. The treatment effect on skin was monitored by visual observations, histopathological analysis, immuno-histochemical analysis, and non-linear microscopic imaging performed 8 days after the treatment, finding no adverse reactions and no thermal damage in both treated areas and surrounding tissues. In addition, a faster healing process, a reduced inflammatory response, a higher collagen content, and a better-recovered skin morphology was evidenced in the treated tissue with respect to the untreated tissue. These morphological features were characterized by means of immuno-histochemical analysis, aimed at imaging fibroblasts and myofibroblasts, and by SHG microscopy, aimed at characterizing collagen organization, demonstrating a fully recovered aspect of dermis as well as a faster neocollagenesis in the treated regions. This study demonstrates that the selective photothermal effect we used for inducing immediate coagulation in superficial wounds is associated to a minimal inflammatory response, which provides reduced recovery times and improved healing process.

Conference title: Photonics West – BIOS 2015

KeyWords: Cell culture; Coagulation; Collagen; Fibroblasts; Recovery, Collagen organizations; Histochemical analysis; Histopathological analysis; Inflammatory response; Morphological features; Photothermal effects; Visual observations; Wound healing, Tissue

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more