Scientific Results

Real-time terahertz digital holography with a quantum cascade laser

Year: 2015

Authors: Locatelli M., Ravaro M., Bartalini S., Consolino L., Vitiello MS., Cicchi R., Pavone FS., De Natale P.

Autors Affiliation: INO-CNR, Istituto Nazionale di Ottica, Largo E. Fermi 6, Firenze, I-50125, Italy; LENS, European Laboratory for NonLinear Spectroscopy, Via N. Carrara 1, Sesto Fiorentino (Firenze), I-50019, Italy; NEST-CNR, Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, I-56127, Italy; Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, Sesto Fiorentino (Firenze), I-50019, Italy

Abstract: Coherent imaging in the THz range promises to exploit the peculiar capabilities of these wavelengths to penetrate common materials like plastics, ceramics, paper or clothes with potential breakthroughs in non-destructive inspection and quality control, homeland security and biomedical applications. Up to now, however, THz coherent imaging has been limited by time-consuming raster scanning, point-like detection schemes and by the lack of adequate coherent sources. Here, we demonstrate real-time digital holography (DH) at THz frequencies exploiting the high spectral purity and the mW output power of a quantum cascade laser combined with the high sensitivity and resolution of a microbolometric array. We show that, in a one-shot exposure, phase and amplitude information of whole samples, either in reflection or in transmission, can be recorded. Furthermore, a 200 times reduced sensitivity to mechanical vibrations and a significantly enlarged field of view are observed, as compared to DH in the visible range. These properties of THz DH enable unprecedented holographic recording of real world dynamic scenes.


Volume: 5      Pages from: 13566-1  to: 13566-7

More Information: This work was partly supported by the Italian Ministry of Education, University, and Research (MIUR) through the program \”FIRB-Futuro in Ricerca 2010\” RBFR10LULP Fundamental research on terahertz photonic devices\”.
DOI: 10.1038/srep13566

Citations: 55
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-11-28
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more