Scientific Results

Acoustic Black Hole in a Stationary Hydrodynamic Flow of Microcavity Polaritons

Year: 2015

Authors: Nguyen H. S., Gerace D., Carusotto I., Sanvitto D., Galopin E., Lemaitre A., Sagnes I., Bloch J., Amo A.

Autors Affiliation: CNRS, LPN, Lab Photon & Nanostruct, F-91460 Marcoussis, France;
Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy;
Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy;
Univ Trento, Dipartimento Fis, I-38123 Povo, Italy;
CNR, Ist Nanosci, NNL, I-73100 Lecce, Italy

Abstract: We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics; in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and supersonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 114 (3)      Pages from: 036402-1  to: 036402-5

KeyWords: Hawking radiation; analog; condensate; solitons;
DOI: 10.1103/PhysRevLett.114.036402

Citations: 79
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-24
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more