Scientific Results

Decoherence of a Single-Ion Qubit Immersed in a Spin-Polarized Atomic Bath

Year: 2013

Authors: Ratschbacher L., Sias C., Carcagni L., Silver J. M., Zipkes C., Koehl M.

Autors Affiliation: Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB30HE, United Kingdom; Istituto Nazionale di Ottica—CNR and LENS, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Physikalisches Institut, University of Bonn, Wegelerstrasse 8, 53115 Bonn, Germany

Abstract: We report on the immersion of a spin qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T-1 and T-2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism. DOI: 10.1103/PhysRevLett.110.160402

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 110 (16)      Pages from: 160402  to: 160402

More Information: We thank A. Imamoglu and C. Kollath for discussions. The work has been supported by EPSRC (EP/H005676/1), ERC (Grant No. 240335), the Leverhulme Trust (C. S.), the Royal Society, and the Wolfson Foundation.
DOI: 10.1103/PhysRevLett.110.160402

Citations: 60
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more