Neural networks for the optical recognition of defects in cloth

Year: 1996

Authors: Hoffer L. M., Francini F., Tiribilli B., Longobardi G.

Autors Affiliation: Istituto Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy

Abstract: A fast system to reveal the presence and type of fabric defects during the weaving process is developed. Since the fabric is similar to a 2-D grid, its defects are clearly observed in the changes in its optical Fourier transform (OFT), which appears stationary while the fabric is moving across the loom. Previous work, based on the statistical parameters of the OFT, showed that the presence of faults can be detected when only global changes in the images are considered. We show that by selecting a small subset of pixels from the image as input to a neural network, fabric defects can not only be detected but also successfully identified. A knowledge-based system could conceivably be constructed to use this information to resolve problems with the loom in real time, without the need for operator intervention. (C) 1996 Society of Photo-Optical Instrumentation Engineers.

Journal/Review: OPTICAL ENGINEERING

Volume: 35 (11)      Pages from: 3183  to: 3190

KeyWords: neural networks; optical Fourier transform; textile; pattern recognition;
DOI: 10.1117/1.601057

Citations: 28
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-05-15
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here