Scientific Results

External ring-cavity quantum cascade lasers

Year: 2013

Authors: Malara P., Blanchard R., Mansuripur T.S., Wojcik A. K., Belyanin A., Fujita K., Edamura T., Furuta S., Yamanishi M., De Natale P., Capasso F.

Autors Affiliation: School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA; Consiglio Nazionale delle Ricerche–Istituto Nazionale di Ottica and European Laboratory for Nonlinear Spectroscopy (LENS), 80078 Pozzuoli (NA), Italy; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Physics and Astronomy, Texas A&M University, College Station, Texas 7784, USA; Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu 434-8601, Japan

Abstract: An external ring-cavity quantum cascade laser (QCL) is demonstrated. Gain competition between the clockwise and anticlockwise ring-cavity modes results in a transition from bidirectional to directional emission as current is increased. In the directional regime, spatial hole burning (SHB) is suppressed, and the spectrum evolves to a single longitudinal mode, in contrast with the multimode spectrum of a comparable Fabry-Perot QCL. The absence of SHB and the long path-length of the external cavity make this laser an excellent candidate for active mode-locking and high-sensitivity spectroscopic applications in the mid-infrared. A proof-of-principle intracavity absorption spectroscopic detection of water vapor is demonstrated. (C) 2013 American Institute of Physics.

Journal/Review: APPLIED PHYSICS LETTERS

Volume: 102 (14)      Pages from: 141105  to: 141105

More Information: The authors wish to thank Anish Goyal from MIT Lincoln Laboratory for the anti-reflection coatings and Franz Kartner for helpful discussions and suggestions. We acknowledge support from the National Science Foundation (NSF) Award No. ECCS-1230477. T. S. M. was supported by an NSF Graduate Student Fellowship. This work was performed in part at the Center for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the NSF.
KeyWords: Active mode locking; Directional emission; Intracavity absorption; Proof of principles; Single longitudinal mode; Spatial hole burning; Spectroscopic application; Spectroscopic detection, Mode-locked fiber lasers; Quantum cascade lasers, Absorption spectroscopy
DOI: 10.1063/1.4800073

Citations: 16
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-23
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more