Scientific Results

Cold and trapped metastable noble gases

Year: 2012

Authors: Vassen W., Cohen-Tannoudji C., Leduc M., Boiron D., Westbrook C.I., Truscott A., Baldwin K., Birkl G., Cancio P., Trippenbach M.

Autors Affiliation: LaserLaB Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands;
Ecole Normale Superieure and College de France, Laboratoire Kastler Brossel, 24 rue Lhomond, 75231 Paris Cedex 05,France;
Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Univ Paris-Sud, Campus Polytechnique RD128 91127 Palaiseau France;
ARC Centre of Excellence for Quantum-Atom Optics Research School of Physics and Engineering, Australian National University,Canberra, ACT 0200, Australia;
Institut fur Angewandte Physik, Technische Universitat Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
Istituto Nazionale di Otiica (INO-CNR) and European Laboratory for Non-linear Spectroscopy (LENS), Via N. Carrara 1, 50019 Sesto Fiorentino FI, Italy;
Uniwersytet Warszawski, ul. Hoza 69, 00-681 Warszawa, Polska

Abstract: We review experimental and theoretical work on cold, trapped metastable noble gases. We emphasize the aspects which distinguish work with these atoms from the large body of work on cold, trapped atoms in general. These aspects include detection techniques and collision processes unique to metastable atoms. We describe several experiments exploiting these unique features in f elds including atom optics and statistical physics. We also discuss precision measurements on these atoms including ne structure splittings, isotope shifts, and atomic lifetimes.


Volume: 84 (1)      Pages from: 175  to: 210

More Information: This work was initiated by the project CIGMA (Controlled Interactions in quantum Gases of Metastable Atoms), partly financed by the European Science Foundation EuroQUAM Programme. We thank all students and co-workers for their contribution to the research presented in this work. W. V. and G. B. acknowledge support from the Dutch Foundation for Fundamental Research on Matter (FOM) and the German Research Foundation (DFG), respectively.
DOI: 10.1103/RevModPhys.84.175

Citations: 103
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-01-16
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more