Equation of state and effective mass of the unitary Fermi gas in a one-dimensional periodic potential
Year: 2008
Authors: Watanabe G., Orso G., Dalfovo F., Pitaevskii L., Stringari S.
Autors Affiliation: Univ Trent, CNR, INFM, BEC, I-38050 Trento, Italy; Univ Trent, Dept Phys, I-38050 Trento, Italy; RIKEN, Inst Chem & Phys Res, Wako, Saitama 3510198, Japan; Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France; PL Kapitza Phys Problems Inst, Moscow 119334, Russia
Abstract: By solving the Bogoliubov-de Gennes equations at zero temperature, we study the effects of a one-dimensional optical lattice on the behavior of a superfluid Fermi gas at unitarity. We show that, due to the lattice, at low densities the gas becomes highly compressible and the effective mass is large, with a consequent significant reduction of the sound velocity. We discuss the role played by the lattice in the formation of molecules and the emergence of two-dimensional effects in the equation of state. Predictions for the density profiles and for the frequency of the collective oscillations in the presence of harmonic trapping are also given.
Journal/Review: PHYSICAL REVIEW A
Volume: 78 (6) Pages from: 063619 to: 063619
More Information: We thank M. Antezza, G. Bruun, E. Furlan, S. Giorgini, Y. Ohashi, and M. Urban for fruitful discussions. G. O. is supported by the European Union under Contract No. EDUG-038970. This work has been supported by MIUR and by Fermix-Euroquam.KeyWords: Bose-Einstein condensation; fermion systems; optical lattices; oscillations; superfluidityDOI: 10.1103/PhysRevA.78.063619Citations: 24data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-08References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here