Universal quantum computation and quantum error correction with ultracold atomic mixtures

Year: 2022

Authors: Kasper V., Gonzalez-Cuadra D., Hegde A., Xia A., Dauphin A., Huber F., Tiemann E., Lewenstein M., Jendrzejewski F., Hauke P.

Autors Affiliation: ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, BARCELONA, 08860, Spain; Universit t Heidelberg, Kirchhoff-Institut f

Abstract: Quantum information platforms made great progress in the control of many-body entanglement and the implementation of quantum error correction, but it remains a challenge to realize both in the same setup. Here, we propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates, while providing a natural candidate for quantum error-correction. In this proposed setup, one atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information. The second atomic species yields phononic excitations, which are used to entangle collective spins. Finally, we discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins, opening up the possibility to universal fault-tolerant quantum computation in ultracold atom systems.

Journal/Review: QUANTUM SCIENCE AND TECHNOLOGY

Volume: 7 (1)      Pages from: 015008-1  to: 015008-15

More Information: The authors are grateful for fruitful discussions with J Eisert, M Gaerttner, T Gasenzer, M Gluza, S Jochim, M Oberthaler, A P Orioli, P Preiss, H Strobel and all the members of the SynQs seminar. ICFO group acknowledges support from ERC AdG NOQIA, State Research Agency AEI (Severo Ochoa Center of Excellence CEX2019-000910-S, Plan National FIDEUA PID2019-106901GB-I00/10.13039/501100011033, FPI, QUANTERA MAQS PCI2019-111828-2/ 10.13039/501100011033), Fundacio Privada Cellex, Fundacio Mir-Puig, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, CERCA program, QuantumCAT / U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020), EU Horizon 2020 FET-OPEN OPTOLogic (Grant No 899794), and the National Science Centre, Poland (Symfonia Grant No. 2016/20/W/ST4/00314), Marie Sklodowska-Curie grant STREDCH No.101029393, La Caixa Junior Leaders fellowships (ID100010434), and EU Horizon 2020 under Marie Sklodowska-Curie Grant Agreement No. 847648 (LCF/BQ/PI19/11690013, LCF/BQ/PI20/11760031, LCF/BQ/PR20/11770012). FH acknowledges the Government of Spain (FIS2020-TRANQI and Severo Ochoa CEX2019-000910-S), Fundacio Cellex, Fundacio Mir-Puig, Generalitat de Catalunya (CERCA, AGAUR SGR 1381), and the Foundation for Polish Science through TEAM-NET (POIR.04.04.00-00-17C1/18-00). PH acknowledges support by Q@TN-Quantum Science and Technologies at Trento, the Provincia Autonoma di Trento, and the ERC Starting Grant StrEnQTh (Project-ID 804305). This work is part of and supported by the DFG Collaborative Research Center ´SFB 1225 (ISOQUANT)´. FJ acknowledges the DFG support through the Project FOR 2724, the Emmy-Noether Grant (Project-ID 377616843) and support by the Bundesministerium fur Wirtschaft und Energie through the project ´EnerQuant´ (Project-ID 03EI1025C).
KeyWords: ultracold atoms; quantum computation; atomic mixtures; quantum error correction
DOI: 10.1088/2058-9565/ac2d39