Development of non expensive technologies for precise maneuvering of completely autonomous unmanned aerial vehicles

Year: 2021

Authors: Bigazzi L., Gherardini S., Innocenti G., Basso M.

Autors Affiliation: 1) Dipartimento di Ingegneria dell?Informazione (DINFO), Universita di Firenze, via di Santa Marta 3, 50139 Firenze, Italy. 2) Dipartimento di Fisica e Astronomia & LENS, Universita di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy. 3) Dipartimento di Ingegneria dell?Informazione (DINFO), Universita di Firenze, via di Santa Marta 3, 50139 Firenze, Italy. 4) Dipartimento di Ingegneria dell?Informazione (DINFO), Universita di Firenze, via di Santa Marta 3, 50139 Firenze, Italy.

Abstract: In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.

Journal/Review: SENSORS (BASEL)

Volume: 21      Pages from: 1  to: 24

More Information: This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement No 101007134.
KeyWords: aircraft navigation, automatic control, computer vision, sensor fusion, unmanned aerial vehicles
DOI: 10.3390/s21020391