Sound emission and annihilations in a programmable quantum vortex collider

Year: 2021

Authors: Kwon W.J.; Del Pace G.; Xhani K.; Galantucci L.; Muzi Falconi A.; Inguscio M.; Scazza F.; Roati G.

Autors Affiliation: European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy; Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy; Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK, United Kingdom; Department of Engineering, Campus Bio-Medico University of Rome, Rome, Italy; Department of Physics, University of Trieste, Trieste, Italy

Abstract: In quantum fluids, the quantization of circulation forbids the diffusion of a vortex swirling flow seen in classical viscous fluids. Yet, accelerating quantum vortices may lose their energy into acoustic radiations(1,2), similar to the way electric charges decelerate on emitting photons. The dissipation of vortex energy underlies central problems in quantum hydrodynamics(3), such as the decay of quantum turbulence, highly relevant to systems as varied as neutron stars, superfluid helium and atomic condensates(4,5). A deep understanding of the elementary mechanisms behind irreversible vortex dynamics has been a goal for decades(3,6), but it is complicated by the shortage of conclusive experimental signatures(7). Here we address this challenge by realizing a programmable vortex collider in a planar, homogeneous atomic Fermi superfluid with tunable inter-particle interactions. We create on-demand vortex configurations and monitor their evolution, taking advantage of the accessible time and length scales of ultracold Fermi gases(8,9). Engineering collisions within and between vortex-antivortex pairs allows us to decouple relaxation of the vortex energy due to sound emission and that due to interactions with normal fluid (that is, mutual friction). We directly visualize how the annihilation of vortex dipoles radiates a sound pulse. Further, our few-vortex experiments extending across different superfluid regimes reveal non-universal dissipative dynamics, suggesting that fermionic quasiparticles localized inside the vortex core contribute significantly to dissipation, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex. By controlling the generation and collision of individual vortices in atomic Fermi superfluids, a study provides a comprehensive view of vortex decay due to mutual friction and vortex-sound interaction.

Journal/Review: NATURE

Volume: 600 (7887)      Pages from: 64  to: 69

KeyWords: Mutual friction; turbulence; vortices; dynamics; motion; states
DOI: 10.1038/s41586-021-04047-4

Citations: 35
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-04-14
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here