Quantum Internet: Networking Challenges in Distributed Quantum Computing
Year: 2020
Authors: Cacciapuoti Angela Sara; Caleffi Marcello; Tafuri Francesco; Cataliotti Francesco Saverio; Gherardini Stefano; Bianchi Giuseppe
Autors Affiliation: Univ Naples Federico II, Naples, Italy; CNIT, Natl Lab Multimedia Commun, Naples, Italy; Univ Florence, European Lab Nonlinear Spect LENS, Florence, Italy; CNR, Inst Opt CNR INO, Rome, Italy; Univ Roma Tor Vergata, Sch Engn, Networking, Rome, Italy.
Abstract: The Quantum Internet, a network interconnecting remote quantum devices through quantum links in synergy with classical ones, is envisioned as the final stage of the quantum revolution, opening fundamentally new communications and computing capabilities. But the Quantum Internet is governed by the laws of quantum mechanics. Phenomena with no counterpart in classical networks, such as no-cloning, quantum measurement, entanglement and quantum teleportation, impose new challenging constraints for network design. Specifically, classical network functionalities are based on the assumption that classical information can be safely read and copied. However, this assumption does not hold in the Quantum Internet. As a consequence, its design requires a major network-paradigm shift to harness the quantum mechanics specificities. The goal of this work is to shed light on the challenges and open problems of Quantum Internet design. We first introduce some basic knowledge of quantum mechanics, needed to understand the differences between a classical and a quantum network. Then, we introduce quantum teleportation as the key strategy for transmitting quantum information without physically transferring the particle that stores the quantum information or violating the principles of quantum mechanics. Finally, the key research challenges to design quantum communication networks are discussed.
Journal/Review: IEEE NETWORK
Volume: 34 (1) Pages from: 137 to: 143
More Information: This work was supported by the project “Towards the Quantum Internet: A Multidisciplinary Effort,” University of Naples Federico II, Italy.KeyWords: Qubit, Internet, Quantum entanglement, Mechanical variables measurement, Atmospheric measurementsDOI: 10.1109/MNET.001.1900092Citations: 213data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-12-01References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here