Transition between Random and Periodic Electron Currents on a DNA Chain

Year: 2021

Authors: Faraji E., Franzosi R., Mancini S., Pettini M.

Autors Affiliation: Aix-Marseille Univ, University de Toulon, CNRS, CPT, 13288 Marseille, France; CNRS Centre de Physique Thyorique UMR7332, 13288 Marseille, France; School of Science and Technology, University of Camerino, I-62032 Camerino, Italy; INFN Sezione di Perugia, I-06123 Perugia, Italy; QSTAR and INO-CNR, Largo Enrico Fermi 2, I-50125 Firenze, Italy

Abstract: By resorting to a model inspired to the standard Davydov and Holstein-Fröhlich models, in the present paper we study the motion of an electron along a chain of heavy particles modeling a sequence of nucleotides proper to a DNA fragment. Starting with a model Hamiltonian written in second quantization, we use the Time Dependent Variational Principle to work out the dynamical equations of the system. It can be found that, under the action of an external source of energy transferred to the electron, and according to the excitation site, the electron current can display either a broad frequency spectrum or a sharply peaked frequency spectrum. This sequence-dependent charge transfer phenomenology is suggestive of a potentially rich variety of electrodynamic interactions of DNA molecules under the action of electron excitation. This could imply the activation of interactions between DNA and transcription factors, or between DNA and external electromagnetic fields.


Volume: 22, 7361      Pages from: 1  to: 16

KeyWords: DNA chains; Davydov model; electron current; Holstein-Fröhlich model; time dependent variational principle
DOI: 10.3390/ijms22147361