Scientific Results

Optomechanical signature of a frictionless flow of superfluid light

Year: 2015

Authors: Larre PE., Carusotto I.

Autors Affiliation: Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy;‎ Univ Trento, Dipartimento Fis, I-38123 Povo, Italy

Abstract: We propose an experimental setup that should make it possible to reveal the frictionless flow of a superfluid of light from the suppression of the drag force that it exerts on a material obstacle. In the paraxial-propagation geometry considered here, the photon-fluid dynamics is described by a wave equation analogous to the Gross-Pitaevskii equation of dilute Bose-Einstein condensates and the obstacle consists in a solid dielectric slab immersed into a nonlinear optical liquid. By means of an ab initio calculation of the electromagnetic force experienced by the obstacle, we anticipate that superfluidity is detectable in state-of-the-art experiments from the disappearance of the optomechanical deformation of the obstacle.

Journal/Review: PHYSICAL REVIEW A

Volume: 91 (5)      Pages from: 053809-1  to: 053809-10

KeyWords: BOGOLIUBOV DISPERSION-RELATION; CRITICAL VELOCITY; LIQUID-HELIUM; CONDENSATION; OBSTACLE
DOI: 10.1103/PhysRevA.91.053809

Citations: 15
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more