Parity-time-antisymmetric atomic lattices without gain

Year: 2015

Authors: Wu JH., Artoni M., La Rocca GC.

Autors Affiliation: NE Normal Univ, Ctr Quantum Sci, Changchun 130117, Peoples R China; European Lab Nonlinear Spect LENS, I-50019 Florence, Italy; Univ Brescia, Dept Engn & Informat Technol, I-25133 Brescia, Italy; Univ Brescia, CNR, INO, I-25133 Brescia, Italy; Scuola Normale Super Pisa, I-56126 Pisa, Italy;‎ CNISM, I-56126 Pisa, Italy

Abstract: Lossy atomic photonic crystals can be suitably tailored so that the real and imaginary parts of the susceptibility are, respectively, an odd and an even function of position. Such a parity-time (PT) space antisymmetry in the susceptibility requires neither optical gain nor negative refraction, but is rather attained by a combined control of the spatial modulation of both the atomic density and their dynamic level shift. These passive photonic crystals made of dressed atoms are characterized by a tunable unidirectional reflectionlessness accompanied by an appreciable degree of transmission. Interestingly, such peculiar properties are associated with non-Hermitian degeneracies of the crystal scattering matrix, which can then be directly observed through reflectivity measurements via a straightforward phase modulation of the atomic dynamic level shift and even off resonance


Volume: 91 (3)      Pages from: 033811-1  to: 033811-10

DOI: 10.1103/PhysRevA.91.033811

Citations: 42
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-05-22
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here