Prethermalization in a quenched one-dimensional quantum fluid of light

Year: 2016

Authors: Larre PE., Carusotto I.

Autors Affiliation: ]Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Povo, Italy; Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, Italy

Abstract: We study the coherence properties of a laser beam after propagation along a one-dimensional lossless nonlinear optical waveguide. Within the paraxial, slowly-varying-envelope, and single-transverse-mode approximations, the quantum propagation of the light field in the nonlinear medium is mapped onto a quantum Gross-Pitaevskii-type evolution of a closed one-dimensional system of many interacting photons. Upon crossing the entrance and the back faces of the waveguide, the photon-photon interaction parameter undergoes two sudden jumps, resulting in a pair of quantum quenches of the system’s Hamiltonian. In the weak-interaction regime, we use the modulus-phase Bogoliubov theory of dilute Bose gases to describe the quantum fluctuations of the fluid of light and predict that correlations typical of a prethermalized state emerge locally in their final form and propagate in a light-cone way at the Bogoliubov speed of sound in the photon fluid. This peculiar relaxation dynamics, visible in the light exiting the waveguide, results in a loss of long-lived coherence in the beam of light

Journal/Review: EUROPEAN PHYSICAL JOURNAL D

Volume: 70 (3)      Pages from: 45-1  to: 45-19

KeyWords: BOSE-EINSTEIN CONDENSATION; OPTICAL-FIBERS; BOSONS; FLOW; RADIATION; OBSTACLE; DYNAMICS; SOLITONS; SILICON; WAVES
DOI: 10.1140/epjd/e2016-60590-2

Citations: 12
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-11-27
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here