Scientific Results

Numerical study of a recent black-hole lasing experiment

Year: 2016

Authors: Tettamanti M., Cacciatori SL., Parola A., Carusotto I.

Autors Affiliation: Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy; INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy; Univ Trento, INO CNR BEC Ctr, I-38123 Povo, Italy;‎ Univ Trento, Dipartimento Fis, I-38123 Povo, Italy

Abstract: We theoretically analyse a recent experiment reporting the observation of a self-amplifying Hawking radiation in a flowing atomic condensate (STEINHAUER J., Nat. Phys., 10 (2014) 864). We are able to accurately reproduce the experimental observations using a theoretical model based on the numerical solution of a mean-field Gross-Pitaevskii equation that does not include quantum fluctuations of the matter field. In addition to confirming the black-hole lasing mechanism, our results show that the underlying dynamical instability has a classical hydrodynamic origin and is triggered by a seed of deterministic nature, linked to the non-stationary of the process, rather than by thermal or zero-point fluctuations. Copyright (C) EPLA, 2016

Journal/Review: EPL

Volume: 114 (6)      Pages from: 60011-1  to: 60011-6

KeyWords: ANALOG; GASES
DOI: 10.1209/0295-5075/114/60011

Citations: 18
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-10
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more