Scientific Results

Rogue-wave bullets in a composite (2+1)D nonlinear medium

Year: 2016

Authors: Chen SH., Soto-Crespo JM., Baronio F., Grelu P., Mihalache D.

Autors Affiliation: ‎Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China; CSIC, Inst Opt, Serrano 121, E-28006 Madrid, Spain;‎ Univ Brescia, INO CNR, Via Branze 38, I-25123 Brescia, Italy; Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy; Univ Bourgogne Franche Comte, CNRS, UMR 6303, Lab Interdisciplinaire Carnot de Bourgogne, 9 Ave A Savary, F-21078 Dijon, France; Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, RO-077125 Magurele, Romania

Abstract: We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise. (C) 2016 Optical Society of America

Journal/Review: OPTICS EXPRESS

Volume: 24 (14)      Pages from: 15251  to: 15260

KeyWords: VARYING ENVELOPE APPROXIMATION; LIGHT BULLETS; SOLITONS; PULSES; OPTICS
DOI: 10.1364/OE.24.015271

Citations: 58
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more