Signal-to-noise properties of correlation plenoptic imaging with chaotic light
Year: 2019
Authors: Scala G., D’Angelo M., Garuccio A., Pascazio, S., Pepe FV.
Autors Affiliation: Univ Bari, Dipartimento Interateneo Fis, I-70126 Bari, Italy; INFN, Sez Bari, I-70125 Bari, Italy; CNR, INO, I-50125 Florence, Italy
Abstract: Correlation plenoptic imaging (CPI) is an imaging technique that exploits the correlations between the intensity fluctuations of light to perform the typical tasks of plenoptic imaging (namely, refocusing out-of-focus parts of the scene, extending the depth of field, and performing three-dimensional reconstruction) without entailing a loss of spatial resolution. Here, we consider two different CPI schemes based on chaotic light, both employing ghost imaging: the first one to image the object, the second one to image the focusing element. We characterize their noise properties in terms of the signal-to-noise ratio (SNR) and compare their performances. We find that the SNR can be significantly easier to control in the second CPI scheme involving standard imaging of the object; under adequate conditions, this scheme enables the number of frames for achieving the same SNR to be reduced by 1 order of magnitude.
Journal/Review: PHYSICAL REVIEW A
Volume: 99 (5) Pages from: 053808-1 to: 053808-11
KeyWords: QUANTUM; MICROSCOPYDOI: 10.1103/PhysRevA.99.053808Citations: 10data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2022-05-22References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here