Scientific Results

Experimental characterization of the energetics of quantum logic gates

Year: 2020

Authors: Cimini V., Gherardini S., Barbieri M., Gianani I., Sbroscia M., Buffoni L., Paternostro M., Caruso F.

Autors Affiliation: Univ Roma Tre, Dipartimento Sci, Via Vasca Navale 84, I-00146 Rome, Italy; Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy; LENS, Via N Carrara 1, I-50019 Sesfto Fiorentino, Italy; QSTAR, Via N Carrara 1, I-50019 Sesfto Fiorentino, Italy; SISSA, Via Bonomea 265, I-34136 Trieste, Italy; Ist Nazl Ottica CNR, I-50125 Florence, Italy; Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 4, I-00185 Rome, Italy; Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy; Queens Univ, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland

Abstract: We characterize the energetic footprint of a two-qubit quantum gate from the perspective of non-equilibrium quantum thermodynamics. We experimentally reconstruct the statistics of energy and entropy fluctuations following the implementation of a controlled-unitary gate, linking them to the performance of the gate itself and the phenomenology of Landauer’s principle at the single-quantum level. Our work thus addresses the energetic cost of operating quantum circuits, a problem that is crucial for the grounding of the upcoming quantum technologies.

Journal/Review: NPJ QUANTUM INFORMATION

Volume: 6 (1)      Pages from: 96-1  to: 96-8

KeyWords: THERMODYNAMICS
DOI: 10.1038/s41534-020-00325-7

Citations: 3
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more