Scientific Results

Laser-Induced Frequency Tuning of Fourier- Limited Single-Molecule Emitters

Year: 2020

Authors: Maja Colautti, Francesco S. Piccioli, Zoran Ristanovic,́ Pietro Lombardi, Amin Moradi, Subhasis Adhikari, Irena Deperasinska, Boleslaw Kozankiewicz, Orrit Michel., Toninelli C.

Autors Affiliation: Maja Colautti − National Institute of Optics (CNR-INO), 50019 Sesto F.no, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), Sesto F.no 50019, Italy
Francesco S. Piccioli − National Institute of Optics (CNR- INO), 50019 Sesto F.no, Italy
Zoran Ristanović − Huygens-Kamerlingh Onnes Laboratory, LION, 2300 RA Leiden, The Netherlands
Pietro Lombardi − National Institute of Optics (CNR-INO), 50019 Sesto F.no, Italy; European Laboratory for Non-Linear Spectroscopy (LENS), Sesto F.no 50019, Italy
Amin Moradi − Huygens-Kamerlingh Onnes Laboratory, LION, 2300 RA Leiden, The Netherlands
Subhasis Adhikari − Huygens-Kamerlingh Onnes Laboratory, LION, 2300 RA Leiden, The Netherlands
Irena Deperasinska − Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
Boleslaw Kozankiewicz − Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland; orcid.org/0000-0002- 2507-2356

Abstract: The local interaction of charges and light in organic solids is the basis of distinct and fundamental effects. We here observe, at the single-molecule scale, how a focused laser beam can locally shift by hundreds of times their natural line width and, in a persistent way, the transition frequency of organic chromophores cooled at liquid helium temperature in different host matrices. Supported by quantum chemistry calculations, the results can be interpreted as effects of a photoionization cascade, leading to a stable electric field, which Stark-shifts the molecular electronic levels. The experimental observation is then applied to a common challenge in quantum photonics, i.e., the independent tuning and synchronization of close-by quantum emitters, which is desirable for multiphoton experiments. Five molecules that are spatially separated by about 50 μm and originally 20 GHz apart are brought into resonance within twice their line width. This tuning method, which does not require additional fabrication steps, is here independently applied to multiple emitters, with an emission line width that is only limited by the spontaneous decay and an inhomogeneous broadening limited to 1 nm. The system hence shows promise for photonic quantum technologies.

Journal/Review: ACS NANO

Volume: 14 (10)      Pages from: 13584  to: 13592

KeyWords: single molecule, optical tuning, organic semiconductors, single-photon sources, Stark shift
DOI: 10.1021/acsnano.0c05620

Citations: 1
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more