Scientific Results

Planar antenna designs for efficient coupling between a single emitter and an optical fiber

Year: 2019

Authors: Soltani N., Agio M.

Autors Affiliation: Laboratory of Nano-Optics and Research Center of Micro and Nano-Chemistry and Engineering (Cμ), University of Siegen, 57072 Siegen, Germany; National Institute of Optics (INO), National Research Council (CNR), 50125 Florence, Italy

Abstract: Fluorescence detection is a well-established readout method for sensing, especially for in-vitro diagnostics (IVD). A practical way to guide the emitted signal to a detector is by means of an optical fiber. However, coupling fluorescence into a fiber is challenging and commonly lacks single-molecule sensitivity. In this work, we investigate specific fiber geometries, materials and coatings that in combination with a planar Yagi-Uda antenna reach efficient excitation and collection. The simulation of a practical setting determines more than 70% coupling efficiency for a horizontally oriented dipole, with respect to the planar antenna, emitting at 700 nm and embedded in polyvinyl alcohol (PVA). Moreover, the coupling efficiency would only scale by a factor of 2/3 for emitters with random orientation, as a result of the antenna geometry. These findings are relevant for single-molecule detection with fiber optics and have implications for other applications involving the coupling of light with nano-scale sources and detectors. Scanning the surface of a sample with such fibers could also be advantageous for imaging techniques to provide a low background noise and a high resolution.

Journal/Review: OPTICS EXPRESS

Volume: 27 (21)      Pages from: 30830  to: 30841

KeyWords: optical antennas, single molecules, fluorescence detection
DOI: 10.1364/OE.27.030830

Citations: 4
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2021-10-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here

gdpr-image
This site uses cookies. If you decide to continue browsing we consider that you accept their use. For more information about cookies and how to delete them please read our Info Policy on cookies use.
Read more