Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber
Year: 2017
Authors: Guenard R., Krupa K., Dupiol R., Fabert M., Bendahmane A., Kermene V., Desfarges-Berthelemot A., Auguste J.L., Tonello A., Barthélémy A., Millot G., Wabnitz S., Couderc V.
Autors Affiliation: Univ Limoges, XLIM, UMR CNRS 7252, 123 Ave A Thomas, F-87060 Limoges, France; Univ Bourgogne Franche Comte, ICB, UMR CNRS 6303, 9 Ave A Savary, F-21078 Dijon, France; Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy; INO CNR, Via Branze 38, I-25123 Brescia, Italy; Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia.
Abstract: We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber.
Journal/Review: OPTICS EXPRESS
Volume: 25 (19) Pages from: 22219 to: 22227
More Information: Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR, PRIN 2015KEZNYM. Ministry of Education and Science of the Russian Federation, Minobrnauka, Y26.31.0017. Conseil Régional du Limousin, C409 SPARC. Horizon 2020, 691051. Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR. – Horiba Medical and BPI-France in the frame of the Dat@diag project (Industrial Strategic Innovation Program); Région Limousin (C409 SPARC); Italian Ministry of University and Research (MIUR) (Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (PRIN 2015KEZNYM); Ministry of Education and Science of the Russian Federation (Minobrnauka) (14.Y26.31.0017); European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 691051.KeyWords: Cleaning; Fibers; Multimode fibers; Q switching, Coupled cavity; Coupled-cavity lasers; Laser pulse duration; Nd:YAG microchip lasers; Non-linear beams; Nonlinear frequency conversion; Passively Q-switched; Single-mode lasers, Neodymium lasersDOI: 10.1364/OE.25.022219Citations: 39data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here