Gold nanoparticle-filled biodegradable photopolymer scaffolds induced muscle remodeling: in vitro and in vivo findings
Year: 2017
Authors: Zsedenyi, A; Farkas, B; Abdelrasoul, GN; Romano, I; Gyukity-Sebestyen, E; Nagy, K; Harmati, M; Dobra, G; Kormondi, S; Decsi, G; Nemeth, IB; Diaspro, A; Brandi, F; Beke, S; Buzas, K
Autors Affiliation: Univ Szeged, Fac Dent, Tisza Lajos Krt 64, H-6720 Szeged, Hungary; IIT, Dept Nanophys, Via Morego 30, I-16163 Genoa, Italy; Hungarian Acad Sci, Biol Res Ctr, Temesvari Krt 62, H-67268 Szeged, Hungary; Univ Szeged, Dept Traumatol, Semmelweis Utca 6, H-6720 Szeged, Hungary; Univ Szeged, Dept Dermatol & Allergol, Koranyi Fasor 6, H-6720 Szeged, Hungary; CNR, INO, Via Moruzzi 1, I-56124 Pisa, Italy; Biol Res Ctr, Inst Biochem, Temesvari Krt 62, H-6726 Szeged, Hungary.
Abstract: Therapeutic stem cell transplantation bears the promise of new directions in organ and tissue replacement, but a number of its difficulties and perils are also well known. Our goal was to develop a method of transplantation by which the transplanted cells remain confined to the transplantation site and induce favorable processes. With the help of mask-projection excimer laser stereolithography, 3D hybrid nanoscaffolds were fabricated from biodegradable, photocurable PPF:DEF resin with incorporated gold nanoparticles (Au NPs). The scaffolds were tested in vitro and in vivo in order to find out about their biocompatibility and fitness for our purposes.
In vitro, macrophages and mouse autologous adipose stem cells (ASCs) were seeded over the hybrid scaffolds and non-hybrid (with Au NPs) scaffolds for 4 days. The hybrid nanocomposite greater stem cell dispension and stem cell adhesion than PPF scaffolds without Au NPs, but such a difference was not seen in the case of macrophages.
In vivo, stem cells, scaffoldings and scaffoldings covered in stem cells were transplanted under the back skin of mice. After 14 days, blood samples were taken and the affected skin area was excised. Cytokine and chemokine profiling did not indicate elevated immunomediators in the sera of experimental animals. Interestingly, the autologous-stem-cell-seeded hybrid nanocomposite scaffold induced muscle tissue regeneration after experimental wound generation in vivo. We could not observe such stem cell-induced tissue regeneration when no scaffolding was used.
We conclude that PPF:DEF resin nanoscaffolds with incorporated gold nanoparticles offer a safe and efficient alternative for the enhancement of local tissue remodeling. The results also support the idea that adipose derived stem cells are an optimal cell type for the purposes of regenerative musculoskeletal tissue engineering.
Journal/Review: MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
Volume: 72 Pages from: 625 to: 630
More Information: This research was funded by Hungarian Scientific Research Fund (OTKA K) 112493 and GINOP-2.3.2-15-2016-00001.KeyWords: STEM-CELLS; STEREOLITHOGRAPHY; REGENERATION; FABRICATIONDOI: 10.1016/j.msec.2016.11.124Citations: 9data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here