Tunable microcavity-stabilized quantum cascade laser for mid-IR high-resolution spectroscopy and sensing
Year: 2016
Authors: Borri S., Siciliani de Cumis M., Insero G., Bartalini S., Cancio P., Mazzotti D., Galli I., Giusfredi G., Santambrogio G., Savchenkov A., Eliyahu D., Ilchenko V., Akikusa N., Matsko A., Maleki L., De Natale P.
Autors Affiliation: CNR, Ist Nazl Ott, Largo E Fermi 6, I-50125 Florence, FI, Italy; LENS European Lab Nonlinear Spect, Via Carrara 1, I-50019 Sesto Fiorentino, FI, Italy; Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy; INRIM Ist Nazl Ric Metrol, Str Cacce 91, I-10135 Turin, Italy; OEwaves Inc, 465 North Halstead St,Suite 140, Pasadena, CA 91107 USA; Hamamatsu Photon KK, Dev Bur Laser Device R&D Grp, Shizuoka 4348601, Japan.
Abstract: The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Journal/Review: SENSORS
Volume: 16 (2) Pages from: 238-1 to: 238-10
More Information: CNR-INO team gratefully acknowledges Marco De Pas, Davide DŽAmbrosio and Inaki Lopez Garcia for useful discussions. The authors acknowledge financial support from Extreme Light Infrastructure (ELI) European project and from Laserlab-Europe, Grant Agreement No. 284464, EU 7th Framework Program. OEwaves team acknowledges partial support from Air Force Office of Scientific Research (AFOSR)(FA9550-12-C-0068) and from CNR-INO.KeyWords: Crystalline materials; Frequency stability; Locks (fasteners); Optical resonators; Resonators; Semiconductor lasers; Spectroscopic analysis; Spectroscopy; Stabilization; Whispering gallery modes, Frequency stabilization; High-resolution spectroscopy; Innovative solutions; Laser stabilization; Molecular absorption lines; Sub-Doppler spectroscopy; Tunable micro-cavities; Whispering gallery mode resonator, Quantum cascade lasersDOI: 10.3390/s16020238Citations: 19data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here