Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography
Year: 2013
Authors: Bianco V., Paturzo M., Memmolo P., Finizio A., Ferraro P., Javidi B.
Autors Affiliation: CNR – National Institute of Optics, Via Campi Flegrei, 34, Pozzuoli (NA) I-80078, Italy;
Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, L. Barsanti e Matteucci (NA), 53, I-80125, Italy;
ECE Department, University of Connecticut, U-157, Storrs, Connecticut 06269, USA
Abstract: Holographic imaging may become severely degraded by a mixture of speckle and incoherent additive noise. Bayesian approaches reduce the incoherent noise, but prior information is needed on the noise statistics. With no prior knowledge, one-shot reduction of noise is a highly desirable goal, as the recording process is simplified and made faster. Indeed, neither multiple acquisitions nor a complex setup are needed. So far, this result has been achieved at the cost of a deterministic resolution loss. Here we propose a fast non-Bayesian denoising method that avoids this trade-off by means of a numerical synthesis of a moving diffuser. In this way, only one single hologram is required as multiple uncorrelated reconstructions are provided by random complementary resampling masks. Experiments show a significant incoherent noise reduction, close to the theoretical improvement bound, resulting in image-contrast improvement. At the same time, we preserve the resolution of the unprocessed image. (C) 2013 Optical Society of America
Journal/Review: OPTICS LETTERS
Volume: 38 (5) Pages from: 619 to: 621
KeyWords: Speckle Contrast ReductionDOI: 10.1364/OL.38.000619Citations: 81data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here