A Compact Atom Interferometer for Future Space Missions

Year: 2010

Authors: Sorrentino F., Bongs K., Bouyer P., Cacciapuoti L., De Angelis M., Dittus H., Ertmer W., Giorgini A., Hartwig J., Hauth M., Herrmann S., Inguscio M., Kajari E., Konemann T., Lammerzahl C., Landragin A., Modugno G., Dos Santos F.P., Peters A., Prevedelli M., Rasel E.M., Schleich W.P., Schmidt M., Senger A., Sengstock K., Stern G., Tino G.M., Walser R.

Autors Affiliation: Dipartimento di Fisica, Università di Firenze, Polo Scientifico, via Sansone 1, 50019 Sesto Fiorentino, Italy;
Midlands Ultracold Atom Research Centre, School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
Laboratoire Charles Fabry de L’Institut d’Optique, Centre National de la Recherche Scientifique, Campus Polytechnique Rd 128, 91127 Palaiseau, France;
Research and Scientific Support Department, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands;
Institute of Space Systems, German Aerospace Center (DLR), Robert-Hooke-Strasse 7, 28359 Bremen, Germany;
Institute of Quantum Optics, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany;
Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
Centre of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm, 29359 Bremen, Germany;
European Laboratory For Non Linear Spectroscopy (LENS), Via Nello Carrara, 1 50019 Sesto Fiorentino (FI), Italy;
Institut für Quantenphysik, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
Observatoire de Paris, SYRTE 61 avenue de l’Obseravtoire, 75014 Paris, France;
Dipartimento di Fisica dell’Università di Bologna, Via Irnerio 46, 40126, Bologna, Italy;
Universität Hamburg, Edmund-Siemers-Allee 1, 20146 Hamburg, Germany;
Institut für Angewandte Physik, Technische Universität Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany

Abstract: Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for the science that relies on these quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. This paper describes the current status of the Space Atom Interferometer project (SAI), funded by the European Space Agency. In a multi-pronged approach, SAI aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.

Journal/Review: MICROGRAVITY SCIENCE AND TECHNOLOGY

Volume: 22 (4)      Pages from: 551  to: 561

More Information: This work was supported by ESA through the SAI project (contract no. 20578/07/NL/VJ).
KeyWords: Atom interferometry; Inertial sensors;
DOI: 10.1007/s12217-010-9240-7

Citations: 45
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here