Two-dimensional disorder for broadband, omnidirectional and polarization-insensitive absorption
Year: 2013
Authors: Burresi M., Pratesi F., Vynck K., Prasciolu M., Tormen M., Wiersma D.S.
Autors Affiliation: European Lab Nonlinear Spect LENS, I-50019 Florence, Italy; Ist Nazl Ottica CNR INO, I-50125 Florence, Italy; IOM CNR, Lab TASC, I-34149 Trieste, Italy
Abstract: The surface of thin-film solar cells can be tailored with photonic nanostructures to allow light trapping in the absorbing medium. This in turn increases the optical thickness of the film and thus enhances their absorption. Such a coherent light trapping is generally accomplished with deterministic photonic architectures. Here, we experimentally explore the use of a different nanostructure, a disordered one, for this purpose. We show that the disorder-induced modes in the film allow improvements in the absorption over a broad range of frequencies and impinging angles. (c) 2013 Optical Society of America
Journal/Review: OPTICS EXPRESS
Volume: 21 (5) Pages from: A268 to: A275
More Information: We wish to thank F. Riboli and G. Conley for fruitful discussions. This work is financially supported by the European Network of Excellence Nanophotonics for Energy Efficiency, the ERC through the Advance Grant PhotBots, ENI S.p.A. Novara, CNR-EFOR, and CNR-Fotonica2015.KeyWords: Nanostructures, Absorbing medium; Impinging angle; Light-trapping; Optical thickness; Photonic nanostructures; Polarization-insensitive; Thin-film solar cells; Optical filmsDOI: 10.1364/OE.21.00A268Citations: 50data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here