The AEGIS experiment at CERN: Measuring the free fall of antihydrogen

Year: 2012

Authors: Kellerbauer A., Allkofer Y., Amsler C., Belov A.S., Bonomi G., Bräunig P., Bremer J., Brusa R.S., Burghart G., Cabaret L., Canali C., Castelli F., Chlouba K., Cialdi S., Comparat D., Consolati G., Dassa L., Di Noto L., Donzella A., Doser M., Dudarev A., Eisel T., Ferragut R., Ferrari G., Fontana A., Genova P., Giammarchi M., Gligorova A., Gninenko S.N., Haider S., Hansen J.P., Haug F., Hogan S.D., Jørgensen L.V., Kaltenbacher T., Krasnický D., Lagomarsino V., Mariazzi S., Matveev V.A., Merkt F., Moia F., Nebbia G., Nédélec P., Niinikoski T., Oberthaler M.K., Perini D., Petrácek V., Prelz F., Prevedelli M., Regenfus C., Riccardi C., Rochet J., Røhne O., Rotondi A., Sacerdoti M., Sandaker H., Špacek M., Storey J., Testera G., Tokareva A., Trezzi D., Vaccarone R., Villa F., Warring U., Zavatarelli S., Zenoni A.

Autors Affiliation: Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany; Physics Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Institute for Nuclear Research of the Russian Academy of Sciences, 7a 60th October Anniversary prospect, Moscow 117312, Russia; Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25133 Brescia, Italy; Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany; Physics Department, European Organisation for Nuclear Research, 1211 Genève 23, Switzerland; Department of Physics, University of Trento, Via Sommarive 14, 38050 Povo (Trento), Italy; Centre national de la recherche scientifique, Laboratoire Aimé Cotton, Campus d’Orsay, 91405 Orsay Cedex, France; Department of Physics, University of Milano, Via Celoria 16, 20133 Milano, Italy; Department of Physics, Czech Technical University in Prague, Brehová 7, 115 19 Praha 1, Czech Republic; Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Largo Fermi 6, 50125 Firenze, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy; Department of Nuclear and Theoretical Physics, University of Pavia, Via Agostino Bassi 6, 27100 Pavia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy; Institute of Physics and Technology, University of Bergen, Alleegaten 55, 5007 Bergen, Norway; Laboratory for Physical Chemistry, ETH Zurich, 8093 Zürich, Switzerland; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy; Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Trento, Via Sommarive 14, 38050 Povo (Trento), Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy;
Institut de Physique Nucléaire de Lyon, Claude Bernard University Lyon 1, 4 Rue Enrico Fermi, 69622 Villeurbanne Cedex, France; Department of Physics, University of Bologna, Via Irnerio 46, 40126 Bologna, Italy; Department of Physics, University of Oslo, Sem Sælands vei 24, 0371 Oslo, Norway; Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

Abstract: After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN\’s Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moiré deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed.

Journal/Review: HYPERFINE INTERACTIONS

Volume: 209      Pages from: 43  to: 49

KeyWords: antihydrogen; gravitation; antiproton; positron;
DOI: 10.1007/s10751-012-0583-x

Citations: 3
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here