New uncertainty relations for tomographic entropy: application to squeezed states and solitons

Year: 2006

Authors: De Nicola S., Fedele R., Man’ko M.A., Man’ko V.I.

Autors Affiliation: Istituto di Cibernetica “E Caianiello” (INO) Via Campi Flegrei,34, I-80078 Pozzuoli (NA), Italy
Dipartimento di Scienze Fisiche, Universit`a Federico II and INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo, via Cintia, 80126 Napoli, Italy

P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 Russia

Abstract: Using the tomographic probability distribution (symplectic tomogram) describing the quantum state (instead of the wave function or density matrix) and properties of recently introduced tomographic entropy associated with the probability distribution, the new uncertainty relation for the tomographic entropy is obtained. Examples of the entropic uncertainty relation for squeezed states and solitons of the Bose-Einstein condensate are considered.

Journal/Review: EUROPEAN PHYSICAL JOURNAL B

Volume: 52 (2)      Pages from: 191  to: 198

KeyWords: quantum mechanics; tomography; entropy; probability;
DOI: 10.1140/epjb/e2006-00280-0

Citations: 45
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here