On the mapping connecting the cylindrical nonlinear von Neumann equation with the standard von Neumann equation
Year: 2010
Authors: Fedele R., De Nicola S., Jovanovic D., Grecu D., Visinescu A.
Autors Affiliation: Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy; Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy; CNR Comprensorio A Olivetti Fabbr, Ist Cibernet Eduardo Caianiello, I-80078 Pozzuoli, NA, Italy; Inst Phys, Belgrade 11001, Serbia; Natl Inst Phys & Nucl Engn Horia Hulubei, Dept Theoret Phys, RO-077125 Bucharest, Romania
Abstract: The Wigner transformation is used to define the quasidistribution (Wigner function) associated with the wave function of the cylindrical nonlinear Schrodinger equation (CNLSE) in a way similar to that of the standard nonlinear Schrodinger equation (NLSE). The phase-space equation, governing the evolution of such quasidistribution, is a sort of nonlinear von Neumann equation (NLvNE): called here the ’cylindrical nonlinear von Neumann equation’ (CNLvNE). Furthermore, the phase-space transformations, connecting the Wigner function and the NLvNE with the ’cylindrical Wigner function’ and the CNLvNE, are found by extending the configuration space transformations that connect the NLSE and the CNLSE. Some examples of phase-space soliton solutions are given analytically and evaluated numerically.
Journal/Review: JOURNAL OF PLASMA PHYSICS
Volume: 76 Pages from: 645 to: 653
KeyWords: Schrodinger-equation; Solitary Waves; FluidDOI: 10.1017/S0022377809990870Citations: 3data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here