Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices

Year: 2001

Authors: Morsch O., Mueller J.H., Cristiani M., Ciampini D., Arimondo E.

Autors Affiliation: INFM, Dipartimento di Fisica, Università di Pisa, Via Buonarroti 2, I-56127 Pisa, Italy

Abstract: We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.

Journal/Review: PHYSICAL REVIEW LETTERS

Volume: 87 (14)      Pages from: 140402-1  to: 140402-4

KeyWords: Bose-Einstein condensation; Optical lattices;
DOI: 10.1103/PhysRevLett.87.140402

Citations: 494
data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-11-17
References taken from IsiWeb of Knowledge: (subscribers only)
Connecting to view paper tab on IsiWeb: Click here
Connecting to view citations from IsiWeb: Click here