Dynamics of Bose-Einstein condensates in optical lattices
Year: 2006
Authors: Morsch O., Oberthaler M.
Autors Affiliation: Dipartimento di Fisica “Enrico Fermi,” CNR-INFM, Largo Pontecorvo 3, I-56127 Pisa, Italy;
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
Abstract: Matter waves inside periodic potentials are well known from solid-state physics, where electrons interacting with a crystal lattice are considered. Atomic Bose-Einstein condensates inside light-induced periodic potentials (optical lattices) share many features with electrons in solids, but also with light waves in nonlinear materials and other nonlinear systems. Generally, atom-atom interactions in Bose-Einstein condensates lead to rich and interesting nonlinear effects. Furthermore, the experimental control over the parameters of the periodic potential and the condensate make it possible to enter regimes inaccessible in other systems. In this review, an introduction to the physics of ultracold bosonic atoms in optical lattices is given and an overview of the theoretical and experimental advances to date.
Journal/Review: REVIEWS OF MODERN PHYSICS
Volume: 78 (19 Pages from: 179 to: 215
KeyWords: Bose-Einstein condensation; Optical lattices; DOI: 10.1103/RevModPhys.78.179Citations: 1381data from “WEB OF SCIENCE” (of Thomson Reuters) are update at: 2024-10-27References taken from IsiWeb of Knowledge: (subscribers only)Connecting to view paper tab on IsiWeb: Click hereConnecting to view citations from IsiWeb: Click here